Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71.925
Filtrar
1.
Sci Rep ; 14(1): 7742, 2024 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565895

RESUMEN

Evidence from genetic and epidemiological studies point to lipid metabolism defects in both the brain and periphery being at the core of Alzheimer's disease (AD) pathogenesis. Previously, we reported that central inhibition of the rate-limiting enzyme in monounsaturated fatty acid synthesis, stearoyl-CoA desaturase (SCD), improves brain structure and function in the 3xTg mouse model of AD (3xTg-AD). Here, we tested whether these beneficial central effects involve recovery of peripheral metabolic defects, such as fat accumulation and glucose and insulin handling. As early as 3 months of age, 3xTg-AD mice exhibited peripheral phenotypes including increased body weight and visceral and subcutaneous white adipose tissue as well as diabetic-like peripheral gluco-regulatory abnormalities. We found that intracerebral infusion of an SCD inhibitor that normalizes brain fatty acid desaturation, synapse loss and learning and memory deficits in middle-aged memory-impaired 3xTg-AD mice did not affect these peripheral phenotypes. This suggests that the beneficial effects of central SCD inhibition on cognitive function are not mediated by recovery of peripheral metabolic abnormalities. Given the widespread side-effects of systemically administered SCD inhibitors, these data suggest that selective inhibition of SCD in the brain may represent a clinically safer and more effective strategy for AD.


Asunto(s)
Enfermedad de Alzheimer , Estearoil-CoA Desaturasa , Ratones , Animales , Estearoil-CoA Desaturasa/genética , Estearoil-CoA Desaturasa/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Metabolismo de los Lípidos/fisiología , Lipogénesis , Modelos Animales de Enfermedad , Ratones Transgénicos
2.
Medicine (Baltimore) ; 103(16): e37824, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38640298

RESUMEN

The dysregulation of lipid metabolism is a critical factor in the initiation and progression of tumors. In this investigation, we aim to characterize the molecular subtypes of head and neck squamous cell carcinoma (HNSCC) based on their association with fatty acid metabolism and develop a prognostic risk model. The transcriptomic and clinical data about HNSCC were obtained from public databases. Clustering analysis was conducted on fatty acid metabolism genes (FAMG) associated with prognosis, utilizing the non-negative matrix factorization algorithm. The immune infiltration, response to immune therapy, and drug sensitivity between molecular subtypes were evaluated. Differential expression genes were identified between subtypes, and a prognostic model was constructed using Cox regression analyses. A nomogram for HNSCC was constructed and evaluated. Thirty FAMGs have been found to exhibit differential expression in HNSCC, out of which three are associated with HNSCC prognosis. By performing clustering analysis on these 3 genes, 2 distinct molecular subtypes of HNSCC were identified that exhibit significant heterogeneity in prognosis, immune landscape, and treatment response. Using a set of 7778 genes that displayed differential expression between the 2 molecular subtypes, a prognostic risk model for HNSCC was constructed comprising 11 genes. This model has the ability to stratify HNSCC patients into high-risk and low-risk groups, which exhibit significant differences in prognosis, immune infiltration, and immune therapy response. Moreover, our data suggest that this risk model is negatively correlated with B cells and most T cells, but positively correlated with macrophages, mast cells, and dendritic cells. Ultimately, we constructed a nomogram incorporating both the risk signature and radiotherapy, which has demonstrated exceptional performance in predicting prognosis for HNSCC patients. A molecular classification system and prognostic risk models were developed for HNSCC based on FAMGs. This study revealed the potential involvement of FAMGs in modulating tumor immune microenvironment and response to treatment.


Asunto(s)
Neoplasias de Cabeza y Cuello , Inmunoterapia , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/terapia , Metabolismo de los Lípidos , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/terapia , Ácidos Grasos , Pronóstico , Microambiente Tumoral/genética
3.
Metabolomics ; 20(3): 46, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38641695

RESUMEN

INTRODUCTION: Cardiac dysfunction after sepsis the most common and severe sepsis-related organ failure. The severity of cardiac damage in sepsis patients was positively associated to mortality. It is important to look for drugs targeting sepsis-induced cardiac damage. Our previous studies found that 4-phenylbutyric acid (PBA) was beneficial to septic shock by improving cardiovascular function and survival, while the specific mechanism is unclear. OBJECTIVES: We aimed to explore the specific mechanism and PBA for protecting cardiac function in sepsis. METHODS: The cecal ligation and puncture-induced septic shock models were used to observe the therapeutic effects of PBA on myocardial contractility and the serum levels of cardiac troponin-T. The mechanisms of PBA against sepsis were explored by metabolomics and network pharmacology. RESULTS: The results showed that PBA alleviated the sepsis-induced cardiac damage. The metabolomics results showed that there were 28 metabolites involving in the therapeutic effects of PBA against sepsis. According to network pharmacology, 11 hub genes were found that were involved in lipid metabolism and amino acid transport following PBA treatment. The further integrated analysis focused on 7 key targets, including Comt, Slc6a4, Maoa, Ppara, Pparg, Ptgs2 and Trpv1, as well as their core metabolites and pathways. In an in vitro assay, PBA effectively inhibited sepsis-induced reductions in Comt, Ptgs2 and Ppara after sepsis. CONCLUSIONS: PBA protects sepsis-induced cardiac injury by targeting Comt/Ptgs2/Ppara, which regulates amino acid metabolism and lipid metabolism. The study reveals the complicated mechanisms of PBA against sepsis.


Asunto(s)
Cardiopatías , Fenilbutiratos , Sepsis , Choque Séptico , Humanos , Metabolismo de los Lípidos , Ciclooxigenasa 2/metabolismo , Ciclooxigenasa 2/uso terapéutico , Metabolómica , Sepsis/complicaciones , Sepsis/tratamiento farmacológico , Sepsis/metabolismo , Cardiopatías/complicaciones , Aminoácidos/metabolismo
4.
J Orthop Surg Res ; 19(1): 251, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38643101

RESUMEN

BACKGROUND: To analyze the relationship between lipid metabolism, coagulation function, and bone metabolism and the contributing factor and staging of non-traumatic femoral head necrosis, and to further investigate the factors influencing the blood indicators related to the staging of non-traumatic femoral head necrosis. METHODS: The medical records of patients with femoral head necrosis were retrieved from the inpatient medical record management system, and the lipid metabolism, bone metabolism, and coagulation indices of non-traumatic femoral head necrosis (including alcoholic, hormonal, and idiopathic group) were obtained according to the inclusion and exclusion criteria, including Low-Density Lipoprotein Cholesterol, Triglycerides, Non-High-Density Lipoprotein Cholesterol, Apolipoprotein A1, Apolipoprotein (B), Apolipoprotein (E), Uric Acid, Alkaline Phosphatase, Bone-specific Alkaline Phosphatase, Activated Partial Thromboplastin Time, Prothrombin Time, D-dimer, Platelet count. The relationship between these blood indices and the different stages under different causative factors was compared, and the factors influencing the stages of non-traumatic femoral head necrosis were analyzed using multivariate logistic regression. RESULTS: (i) Gender, Age and BMI stratification, Low-density Lipoprotein Cholesterol, Triglycerides, Non-High-density Lipoprotein Cholesterol, Apolipoprotein (B), Apolipoprotein (E), Uric Acid, Bone-specific Alkaline Phosphatase, Activated Partial Thromboplastin Time, Plasminogen Time, D-dimer, and Platelet count of the alcohol group were statistically different when compared among the different ARCO staging groups; (ii) The differences in Age and BMI stratification, Triglycerides, Non-High-density Lipoprotein Cholesterol, Apolipoprotein A1, Apolipoprotein B, Apolipoprotein E, Uric Acid, Bone-specific Alkaline Phosphatase, Activated Partial Thromboplastin Time, Plasminogen Time, D-dimer, and Platelet count were statistically significant when compared among the different phases in the hormone group (P < 0.05); (iii) The differences in Age and BMI stratification, Non-High-Density Lipoprotein Cholesterol, Apolipoprotein A1, Apolipoprotein (B), Apolipoprotein (E), Uric Acid, Activated Partial Thromboplastin Time, D-dimer, and Platelet count were statistically significant when compared among the different stages in the idiopathic group (P < 0.05); (v) Statistically significant indicators were included in the multivariate logistic regression analysis, excluding the highly correlated bone-specific alkaline phosphatase, and the results showed that Low-density lipoprotein was negatively correlated with changes in the course of ARCO, and Non-High-Density Lipoprotein cholesterol, Apo B, Activated Partial Thromboplastin Time, and Platelet count were significantly and positively correlated with disease progression. CONCLUSION: An abnormal hypercoagulable state as well as an abnormal hyperlipidemic state are risk factors for the progression of non-traumatic femoral head necrosis under various exposure factors, as indicated by Non-High-Density Lipoprotein Cholesterol, Apolipoprotein B, Activated Fractional Thromboplastin Time, and Platelet Counts.


Asunto(s)
Apolipoproteína A-I , Necrosis de la Cabeza Femoral , Humanos , Modelos Logísticos , Metabolismo de los Lípidos , Fosfatasa Alcalina , Ácido Úrico , Colesterol , Triglicéridos , LDL-Colesterol , Plasminógeno
5.
J Nutr ; 154(4): 1321-1332, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38582699

RESUMEN

BACKGROUND: Obesity is a progressive metabolic disease that begins with lipid metabolism disorders. Aromatic amino acids (AAAs), including tryptophan, phenylalanine, and tyrosine, have diverse biological activities as nutrients. However, the underlying mechanisms by which AAAs affect lipid metabolism are unclear. OBJECTIVES: This study was designed to investigate the possible roles and underlying molecular mechanisms of AAA in the pathogenesis of lipid metabolism disorders. METHODS: We added an AAA mixture to the high-fat diet (HFD) of mice. Glucose tolerance test was recorded. Protein expression of hepatic bile acid (BA) synthase and mRNA expression of BA metabolism-related genes were determined. Hepatic BA profiles and gut microbial were also determined in mice. RESULTS: The results showed that AAA significantly increased body weight and white adipose tissue, aggravated liver injury, impaired glucose tolerance and intestinal integrity, and significantly increased hepatic BA synthesis by inhibiting intestinal farnesoid X receptor (FXR). Moreover, AAA increased the content of total BA in the liver and altered the hepatic BA profile, with elevated levels of lithocholic acid, glycochenodeoxycholic acid, and glycoursodeoxycholic acid. AAA markedly increased the levels of proteins involved in BA synthesis (cholesterol 7α-hydroxylase and oxysterol 7α-hydroxylase) and inhibited the intestinal FXR. Gut microbial composition also changed, reducing the abundance of some beneficial bacteria, such as Parvibacter and Lactobacillus. CONCLUSIONS: Under HFD conditions, AAAs stimulate BA synthesis in both the classical and alternative pathways, leading to aggravation of liver injury and fat deposition. Excessive intake of AAA disrupts BA metabolism and contributes to the development of lipid metabolism disorders, suggesting that AAA may be a causative agent of lipid metabolism disorders.


Asunto(s)
Trastornos del Metabolismo de los Lípidos , Metabolismo de los Lípidos , Ratones , Animales , Aminoácidos Aromáticos , Hígado/metabolismo , Trastornos del Metabolismo de los Lípidos/metabolismo , Ácidos y Sales Biliares/metabolismo , Ratones Endogámicos C57BL
6.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1587-1593, 2024 Mar.
Artículo en Chino | MEDLINE | ID: mdl-38621943

RESUMEN

This study aims to explore the effect of Zuogui Jiangtang Qinggan Formula(ZGJTQGF) on the lipid metabolism in the db/db mouse model of type 2 diabetes mellitus(T2DM) complicated with non-alcoholic fatty liver disease(NAFLD) via the insulin receptor(INSR)/adenosine 5'-monophosphate(AMP)-activated protein kinase(AMPK)/sterol-regulatory element-binding protein 2(SREBP-2) signaling pathway. Twenty-four db/db mice were randomized into positive drug(metformin, 0.067 g·kg~(-1)) and low-(7.5 g·kg~(-1)) and high-dose(15 g·kg~(-1)) ZGJTQGF groups. Six C57 mice were used as the blank group and administrated with an equal volume of distilled water. The mice in other groups except the blank group were administrated with corresponding drugs by gavage for 6 consecutive weeks. At the end of drug administration, fasting blood glucose(FBG) and blood lipid levels were measured, and oral glucose tolerance test was performed. Compared with the blank group, the mice treated with ZGJTQGF showed decreased body mass and liver weight coefficient, lowered levels of FBG, total cholesterol(TC), triglyceride(TG), and low-density lipoprotein(LDL), and weakened liver function. The pathological changes and lipid accumulation in the liver tissue were examined. Western blot was employed to measure the protein levels of INSR, AMPK, p-AMPK, and SREBP-2. Compared with the blank group, the model group showed down-regulated protein levels of INSR and p-AMPK/AMPK and up-regulated protein level of SREBP-2. Compared with the model group, high-dose ZGJTQGF up-regulated the protein levels of INSR and p-AMPK/AMPK and down-regulated the protein level of SREBP-2. Low-dose ZGJTQGF slightly up-regulated the protein levels of INSR and p-AMPK/AMPK and down-regulated the protein level of SREBP-2, without significant differences. The results suggested that ZGJTQGF may alleviate insulin resistance and improve lipid metabolism in db/db mice by activating the INSR/AMPK/SREBP-2 signaling pathway.


Asunto(s)
Diabetes Mellitus Tipo 2 , Medicamentos Herbarios Chinos , Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Metabolismo de los Lípidos , Proteínas Quinasas Activadas por AMP/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Hígado , Lípidos
7.
Food Chem Toxicol ; 187: 114631, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38570025

RESUMEN

Toosendanin (TSN) is the main active compound derived from Melia toosendan Sieb et Zucc with various bioactivities. However, liver injury was observed in TSN limiting its clinical application. Lipid metabolism plays a crucial role in maintaining cellular homeostasis, and its disruption is also essential in TSN-induced hepatotoxicity. This study explored the hepatotoxicity caused by TSN in vitro and in vivo. The lipid droplets were significantly decreased, accompanied by a decrease in fatty acid transporter CD36 and crucial enzymes in the lipogenesis including ACC and FAS after the treatment of TSN. It was suggested that TSN caused lipid metabolism disorder in hepatocytes. TOFA, an allosteric inhibitor of ACC, could partially restore cell survival via blocking malonyl-CoA accumulation. Notably, TSN downregulated the LXRα/Lipin1/SREBP1 signaling pathway. LXRα activation improved cell survival and intracellular neutral lipid levels, while SREBP1 inhibition aggravated the cell damage and caused a further decline in lipid levels. Male Balb/c mice were treated with TSN (5, 10, 20 mg/kg/d) for 7 days. TSN exposure led to serum lipid levels aberrantly decreased. Moreover, the western blotting results showed that LXRα/Lipin1/SREBP1 inhibition contributed to TSN-induced liver injury. In conclusion, TSN caused lipid metabolism disorder in liver via inhibiting LXRα/Lipin1/SREBP1 signaling pathway.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Medicamentos Herbarios Chinos , Trastornos del Metabolismo de los Lípidos , Triterpenos , Ratones , Animales , Masculino , Metabolismo de los Lípidos , Medicamentos Herbarios Chinos/farmacología , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Lípidos
8.
Eur J Med Chem ; 270: 116358, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38574638

RESUMEN

The fatty acid-binding protein 1 (FABP1) is a fatty acid transporter protein that is considered as an emerging target for metabolic diseases. Despite forceful evidence that the inhibition of FABP1 is essential for ameliorating NASH, pharmacological control and validation of FABP1 are hindered by a lack of relevant inhibitors as pharmacological tool. Therefore, the development of effective FABP1 inhibitors is a current focus of research. Herein, we firstly reported the comprehensive structure-activity relationship (SAR) study of novel FABP1 inhibitors derived from high throughput screening of our in-house library, which resulting in the identification of the optimal compound 44 (IC50 = 4.46 ± 0.54 µM). Molecular docking studies revealed that 44 forms stable hydrogen bonds with amino acids around the active pocket of FABP1. Moreover, 44 alleviated the typical histological features of fatty liver in NASH mice, including steatosis, lobular inflammation, ballooning and fibrosis. Additionally, 44 has been demonstrated to have lipid metabolism regulating, anti-oxidative stress and hepatoprotective properties. This study might be provided a promising insight into the field of NASH and inspiration for the development of FABP1 inhibitors.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Metabolismo de los Lípidos , Fibrosis , Proteínas de Unión a Ácidos Grasos/metabolismo , Hígado/metabolismo
9.
BMC Genomics ; 25(1): 323, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561663

RESUMEN

BACKGROUND: Cow milk fat is an essential indicator for evaluating and measuring milk quality and cow performance. Growing research has identified the molecular functions of circular RNAs (circRNAs) necessary for mammary gland development and lactation in mammals. METHOD: The present study analyzed circRNA expression profiling data in mammary epithelial cells (MECs) from cows with highly variable milk fat percentage (MFP) using differential expression analysis and weighted gene co-expression network analysis (WGCNA). RESULTS: A total of 309 differentially expressed circRNAs (DE-circRNAs) were identified in the high and low MFP groups. WGCNA analysis revealed that the pink module was significantly associated with MFP (r = - 0.85, P = 0.007). Parental genes of circRNAs in this module were enriched mainly in lipid metabolism-related signaling pathways, such as focal adhesion, ECM-receptor interaction, adherens junction and AMPK. Finally, six DE-circRNAs were screened from the pink module: circ_0010571, circ_0007797, circ_0002746, circ_0003052, circ_0004319, and circ_0012840. Among them, circ_0002746, circ_0003052, circ_0004319, and circ_0012840 had circular structures and were highly expressed in mammary tissues. Subcellular localization revealed that these four DE-circRNAs may play a regulatory role in the mammary glands of dairy cows, mainly as competitive endogenous RNAs (ceRNAs). Seven hub target genes (GNB1, GNG2, PLCB1, PLCG1, ATP6V0C, NDUFS4, and PIGH) were obtained by constructing the regulatory network of their ceRNAs and then analyzed by CytoHubba and MCODE plugins in Cytoscape. Functional enrichment analysis revealed that these genes are crucial and most probable ceRNA regulators in milk fat metabolism. CONCLUSIONS: Our study identified several vital circRNAs and ceRNAs affecting milk fat synthesis, providing new research ideas and a theoretical basis for cow lactation, milk quality, and breed improvement.


Asunto(s)
MicroARNs , ARN Circular , Femenino , Bovinos , Animales , ARN Circular/genética , ARN Circular/metabolismo , Leche/metabolismo , 60414 , Lactancia/genética , Metabolismo de los Lípidos/genética , Redes Reguladoras de Genes , MicroARNs/genética , Mamíferos/genética
10.
Lipids Health Dis ; 23(1): 95, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38566209

RESUMEN

Metabolic dysfunction-associated steatotic liver disease (MASLD) is the leading cause of chronic liver disease that affects over 30% of the world's population. For decades, the heterogeneity of non-alcoholic fatty liver disease (NAFLD) has impeded our understanding of the disease mechanism and the development of effective medications. However, a recent change in the nomenclature from NAFLD to MASLD emphasizes the critical role of systemic metabolic dysfunction in the pathophysiology of this disease and therefore promotes the progress in the pharmaceutical treatment of MASLD. In this review, we focus on the mechanism underlying the abnormality of hepatic lipid metabolism in patients with MASLD, and summarize the latest progress in the therapeutic medications of MASLD that target metabolic disorders.


Asunto(s)
Enfermedades Metabólicas , Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Metabolismo de los Lípidos
11.
Lipids Health Dis ; 23(1): 98, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570797

RESUMEN

Pulmonary fibrosis (PF) is a severe pulmonary disease with limited available therapeutic choices. Recent evidence increasingly points to abnormal lipid metabolism as a critical factor in PF pathogenesis. Our latest research identifies the dysregulation of low-density lipoprotein (LDL) is a new risk factor for PF, contributing to alveolar epithelial and endothelial cell damage, and fibroblast activation. In this study, we first integrative summarize the published literature about lipid metabolite changes found in PF, including phospholipids, glycolipids, steroids, fatty acids, triglycerides, and lipoproteins. We then reanalyze two single-cell RNA-sequencing (scRNA-seq) datasets of PF, and the corresponding lipid metabolomic genes responsible for these lipids' biosynthesis, catabolism, transport, and modification processes are uncovered. Intriguingly, we found that macrophage is the most active cell type in lipid metabolism, with almost all lipid metabolic genes being altered in macrophages of PF. In type 2 alveolar epithelial cells, lipid metabolic differentially expressed genes (DEGs) are primarily associated with the cytidine diphosphate diacylglycerol pathway, cholesterol metabolism, and triglyceride synthesis. Endothelial cells are partly responsible for sphingomyelin, phosphatidylcholine, and phosphatidylethanolamines reprogramming as their metabolic genes are dysregulated in PF. Fibroblasts may contribute to abnormal cholesterol, phosphatidylcholine, and phosphatidylethanolamine metabolism in PF. Therefore, the reprogrammed lipid profiles in PF may be attributed to the aberrant expression of lipid metabolic genes in different cell types. Taken together, these insights underscore the potential of targeting lipid metabolism in developing innovative therapeutic strategies, potentially leading to extended overall survival in individuals affected by PF.


Asunto(s)
Fibrosis Pulmonar , Humanos , Fibrosis Pulmonar/genética , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología , Análisis de Expresión Génica de una Sola Célula , Metabolismo de los Lípidos/genética , Células Endoteliales/metabolismo , Fosfolípidos/metabolismo , Colesterol/metabolismo , Fosfatidilcolinas
12.
Ann Med ; 56(1): 2337740, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38574398

RESUMEN

BACKGROUND: Angiopoietin-like protein 4 (ANGPTL4) is recognized as a crucial regulator in lipid metabolism. Acetyl-CoA carboxylases (ACACAs) play a role in the ß-oxidation of fatty acids. Yet, the functions of ANGPTL4 and ACACA in dyslipidemia of obstructive sleep apnea (OSA) remain unclear. METHODS: This study included 125 male OSA subjects from the Shanghai Sleep Health Study (SSHS) who were matched for age, body mass index (BMI), and lipid profile. Serum ANGPTL4 levels were measured via ELISA. The ANGPTL4 T266M variants of 4455 subjects along with their anthropometric, fasting biochemical, and standard polysomnographic parameters were collected. Linear regression was used to analyze the associations between quantitative traits and ANGPTL4 T266M. Molecular docking and molecular dynamic simulation were employed to compare the effects of the wild-type ANGPTL4 and its T266M mutation on ACACA. RESULTS: Serum ANGPTL4 levels significantly decreased with increasing OSA severity (non-OSA: 59.6 ± 17.4 ng/mL, mild OSA: 50.0 ± 17.5 ng/mL, moderate OSA: 46.3 ± 15.5 ng/mL, severe OSA: 19.9 ± 14.3 ng/mL, respectively, p = 6.02 × 10-16). No associations were found between T266M and clinical characteristics. Molecular docking indicated that mutant ANGTPL4 T266M had stronger binding affinity for the ACACA protein, compared with wild-type ANGPTL4. In terms of protein secondary structure, mutant ANGTPL4 T266M demonstrated greater stability than wild-type ANGPTL4. CONCLUSIONS: Serum ANGTPL4 levels were significantly decreased in OSA patients, particularly among individuals with severe OSA. Although functional ANGTPL4 T266M variants were not associated with lipid levels in OSA, ANGTPL4 T266M could enhance binding affinity for the ACACA protein, potentially regulating lipid metabolism.


Asunto(s)
Acetil-CoA Carboxilasa , Apnea Obstructiva del Sueño , Humanos , Masculino , Proteína 4 Similar a la Angiopoyetina/genética , Metabolismo de los Lípidos/genética , Simulación del Acoplamiento Molecular , China , Apnea Obstructiva del Sueño/genética , Lípidos
13.
Pestic Biochem Physiol ; 200: 105827, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38582591

RESUMEN

In addition to the acute lethal toxicity, insecticides might affect population dynamics of insect pests by inducing life history trait changes under low concentrations, however, the underlying mechanisms remain not well understood. Here we examined systemic impacts on development and reproduction caused by low concentration exposures to cyantraniliprole in the fall armyworm (FAW), Spodoptera frugiperda, and the putative underlying mechanisms were investigated. The results showed that exposure of third-instar larvae to LC10 and LC30 of cyantraniliprole significantly extended larvae duration by 1.46 and 5.41 days, respectively. Treatment with LC30 of cyantraniliprole significantly decreased the pupae weight and pupation rate as well as the longevity, fecundity and egg hatchability of female adults. Consistently, we found that exposure of FAW to LC30 cyantraniliprole downregulated the mRNA expression of four ecdysteroid biosynthesis genes including SfNobo, SfShd, SfSpo and SfDib and one ecdysone response gene SfE75 in the larvae as well as the gene encoding vitellogenin (SfVg) in the female adults. We also found that treatment with LC30 of cyantraniliprole significantly decreased the whole body levels of glucose, trehalose, glycogen and triglyceride in the larvae. Our results indicate that low concentration of cyantraniliprole inhibited FAW development by disruption of ecdysteroid biosynthesis as well as carbohydrate and lipid metabolism, which have applied implications for the control of FAW.


Asunto(s)
Ecdisteroides , Insecticidas , Pirazoles , ortoaminobenzoatos , Animales , Spodoptera , Metabolismo de los Lípidos , Larva , Insecticidas/toxicidad , Carbohidratos
15.
Molecules ; 29(7)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38611773

RESUMEN

Detailed investigation of the lipidome remodeling upon normal weight conditions, obesity, or weight loss, as well as the influence of physical activity, can help to understand the mechanisms underlying dyslipidemia in metabolic conditions correlated to the emergence and progression of non-alcoholic fatty liver disease (NAFLD). C57BL/6 male mice were fed a normal diet (ND) or a high-fat diet (HFD) for 20 weeks. Subgroups within the high-fat diet (HFD) group underwent different interventions: some engaged in exercise (HFDex), others were subjected to weight loss (WL) by changing from the HFD to ND, and some underwent a combination of weight loss and exercise (WLex) during the final 8 weeks of the 20-week feeding period. To support our understanding, not only tissue-specific lipid remodeling mechanisms but also the cross-talk between different tissues and their impact on the systemic regulation of lipid metabolism are essential. Exercise and weight loss-induced specific adaptations in the liver and visceral adipose tissue lipidomes of mice were explored by the UPLC-TOF-MS/MS untargeted lipidomics methodology. Lipidomic signatures of ND and HFD-fed mice undergoing weight loss were compared with animals with and without physical exercise. Several lipid classes were identified as contributing factors in the discrimination of the groups by multivariate analysis models, such as glycerolipids, glycerophospholipids, sphingolipids, and fatty acids, with respect to liver samples, whereas triglycerides were the only lipid class identified in visceral adipose tissue. Lipids found to be dysregulated in HFD animals are related to well-established pathways involved in the biosynthesis of PC, PE, and TG metabolism. These show a reversing trend back to basic levels of ND when animals change to a normal diet after 12 weeks, whereas the impact of exercise, though in some cases it slightly enhances the reversing trend, is not clear.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Masculino , Animales , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/etiología , Lipidómica , Metabolismo de los Lípidos , Dieta Alta en Grasa/efectos adversos , Espectrometría de Masas en Tándem , Tejido Adiposo , Ácidos Grasos , Pérdida de Peso
16.
Molecules ; 29(7)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38611823

RESUMEN

(1) Background: Diabetes is a common metabolic disease that seriously endangers human health. In the present study, we investigated the therapeutic effects of the active ingredient Eleutheroside B (EB) from the traditional Chinese medicine Eleutheroside on diabetes mellitus in a zebrafish model. Concomitant hepatic injury was also analysed, along with the study of possible molecular mechanisms using metabolomics technology. This work should provide some theoretical references for future experimental studies. (2) Methods: A zebrafish diabetes model was constructed by soaking in a 1.75% glucose solution and feeding a high-fat diet. The intervention drug groups were metformin (100 µg∙mL-1) and EB (50, 100, and 150 µg∙mL-1) via water-soluble exposure for 30 days. Glucose, TG, TC, LDL-C, and HDL-C were evaluated in different treatment groups. GLUT4 protein expression was also evaluated in each group, and liver injury was observed by HE staining. Metabolomics techniques were used to investigate the mechanism by which EB regulates endogenous markers and metabolic pathways during the development of diabetes. (3) Results: All EB treatment groups in diabetic zebrafish showed significantly reduced body mass index (BMI) and improved blood glucose and lipid profiles. EB was found to upregulate GLUT4 protein expression and ameliorate the liver injury caused by diabetes. Metabolomics studies showed that EB causes changes in the metabolic profile of diabetic zebrafish. These were related to the regulation of purine metabolism, cytochrome P450, caffeine metabolism, arginine and proline metabolism, the mTOR signalling pathway, insulin resistance, and glycerophospholipid metabolism. (4) Conclusions: EB has a hypoglycaemic effect in diabetic zebrafish as well as significantly improving disorders of glycolipid metabolism. The mechanism of action of EB may involve regulation of the mTOR signalling pathway, purine metabolism, caffeine metabolism, and glycerophospholipid metabolism.


Asunto(s)
Diabetes Mellitus , Glucosa , Glucósidos , Fenilpropionatos , Humanos , Animales , Metabolismo de los Lípidos , Pez Cebra , Cafeína , Transportador de Glucosa de Tipo 4 , Serina-Treonina Quinasas TOR , Glicerofosfolípidos
17.
Molecules ; 29(7)2024 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-38611940

RESUMEN

Growth hormone deficiency (GHD) and idiopathic short stature (ISS) are the most common types of short stature (SS), but little is known about their pathogenesis, and even less is known about the study of adolescent SS. In this study, nuclear magnetic resonance (NMR)-based metabolomic analysis combined with least absolute shrinkage and selection operator (LASSO) were performed to identify the biomarkers of different types of SS (including 94 preadolescent GHD (PAG), 61 preadolescent ISS (PAI), 43 adolescent GHD (ADG), and 19 adolescent ISS (ADI)), and the receiver operating characteristic curve (ROC) was further used to evaluate the predictive power of potential biomarkers. The results showed that fourteen, eleven, nine, and fifteen metabolites were identified as the potential biomarkers of PAG, PAI, ADG, and ADI compared with their corresponding controls, respectively. The disturbed metabolic pathways in preadolescent SS were mainly carbohydrate metabolism and lipid metabolism, while disorders of amino acid metabolism played an important role in adolescent SS. The combination of aspartate, ethanolamine, phosphocholine, and trimethylamine was screened out to identify PAI from PAG, and alanine, histidine, isobutyrate, methanol, and phosphocholine gave a high classification accuracy for ADI and ADC. The differences in metabolic characteristics between GHD and ISS in preadolescents and adolescents will contribute to the development of individualized clinical treatments in short stature.


Asunto(s)
Enanismo , Fosforilcolina , Adolescente , Humanos , Enanismo/diagnóstico , Metabolismo de los Lípidos , Biomarcadores , Hormona del Crecimiento
18.
Nutrients ; 16(7)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38613012

RESUMEN

Aging-associated hepatic fatty acid (FA) oxidation dysfunction contributes to impaired adaptive thermogenesis. 5-Heptadecylresorcinol (AR-C17) is a prominent functional component of whole wheat and rye, and has been demonstrated to improve the thermogenic capacity of aged mice via the regulation of Sirt3. However, the effect of AR-C17 on aging-associated hepatic FA oxidation dysfunction remains unclear. Here, 18-month-old C57BL/6J mice were orally administered with AR-C17 at a dose of 150 mg/kg/day for 8 weeks. Systemic glucose and lipid metabolism, hepatic FA oxidation, and the lipolysis of white adipose tissues (WAT) were measured. The results showed that AR-C17 improved the hepatic FA oxidation, and especially acylcarnitine metabolism, of aged mice during cold stimulation, with the enhancement of systemic glucose and lipid metabolism. Meanwhile, AR-C17 improved the WAT lipolysis of aged mice, promoting hepatic acylcarnitine production. Furthermore, the adipose-specific Sirt3 knockout mice were used to investigate and verify the regulation mechanism of AR-C17 on aging-associated hepatic FA oxidation dysfunction. The results showed that AR-C17 failed to improve the WAT lipolysis and hepatic FA oxidation of aged mice in the absence of adipose Sirt3, indicating that AR-C17 might indirectly influence hepatic FA oxidation via regulating WAT Sirt3. Our findings suggest that AR-C17 might improve aging-associated hepatic FA oxidation dysfunction via regulating adipose Sirt3.


Asunto(s)
Carnitina/análogos & derivados , Resorcinoles , Sirtuina 3 , Animales , Ratones , Ratones Endogámicos C57BL , Obesidad , Metabolismo de los Lípidos , Envejecimiento , Glucosa , Ratones Noqueados , Ácidos Grasos
19.
Nutrients ; 16(7)2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38613052

RESUMEN

Memory impairment is a serious problem with organismal aging and increased social pressure. The tetrapeptide Ala-Phe-Phe-Pro (AFFP) is a synthetic analogue of Antarctic krill derived from the memory-improving Antarctic krill peptide Ser-Ser-Asp-Ala-Phe-Phe-Pro-Phe-Arg (SSDAFFPFR) after digestion and absorption. The objective of this research was to assess the neuroprotective effects of AFFP by reducing oxidative stress and controlling lipid metabolism in the brains of mice with memory impairment caused by scopolamine. The 1H Nuclear magnetic resonance spectroscopy results showed that AFFP had three active hydrogen sites that could contribute to its antioxidant properties. The findings from in vivo tests demonstrated that AFFP greatly enhanced the mice's behavioral performance in the passive avoidance, novel object recognition, and eight-arm maze experiments. AFFP reduced oxidative stress by enhancing superoxide dismutase activity and malondialdehyde levels in mice serum, thereby decreasing reactive oxygen species level in the mice hippocampus. In addition, AFFP increased the unsaturated lipid content to balance the unsaturated lipid level against the neurotoxicity of the mice hippocampus. Our findings suggest that AFFP emerges as a potential dietary intervention for the prevention of memory impairment disorders.


Asunto(s)
Dipéptidos , Euphausiacea , Animales , Ratones , Metabolismo de los Lípidos , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/tratamiento farmacológico , Trastornos de la Memoria/prevención & control , Derivados de Escopolamina , Hipocampo , Lípidos
20.
BMC Cancer ; 24(1): 455, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605344

RESUMEN

BACKGROUND: The aim of this study was to explore the correlation between biomarkers of lipid metabolism and gastric cancer. METHODS: 1120 gastric cancer patients and 1134 health examiners enrolled in this study. The clinic data and serum lipid level, including Total cholesterol (TC), Triglyceride (TG), Low-density lipoprotein cholesterol (LDL-C) and High-density lipoprotein cholesterol (HDL-C), were collected. RESULTS: Serum TG and LDL-C levels in patients with gastric cancer were higher than those in the control group. HDL-C levels were lower than the control group (P < 0.05). HDL-C and LDL-C were significantly correlated with the risk of gastric cancer. Concentrating on clinicopathological features, increased TG was more frequently in male patients with distal gastric cancer, N0 stage and early TNM stage. Increased TC was more frequently in early T, N and TNM stage. Decreased HDL-C was more common in distal location and low-undifferentiated gastric cancer. LDL-C elevation was more common in distal gastric cancer and early T stage. CONCLUSIONS: The serum lipid level of gastric cancer patients was higher than healthy controls. HDL-C and LDL-C abnormal correlated with gastric cancer risk. However, as the progresses of gastric cancer, poor patient intake, increased tumor consumption, and continuous declining in nutritional status, the levels of TC and TG gradually decreased in advanced gastric cancer.


Asunto(s)
Neoplasias Gástricas , Humanos , Masculino , LDL-Colesterol , Estudios de Casos y Controles , Metabolismo de los Lípidos , Triglicéridos , Biomarcadores , HDL-Colesterol
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...